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1 Problem and outline

• A synchronic typological frequency f , however large, is not a “linguistic
fact”, insofar as precisely the same value of f may result from widely
different combinations of circumstances.

• Hence, typological frequencies can only be interpreted linguistically if
language sampling is “enhanced” by the diachronic dimension, but this
seems empirically infeasible.

However, this can be done by means of a relatively simple and feasible tech-
nique that may significantly increase the linguistic value of statistical ty-
pological observations. The basic idea is very simple: what we need is a
representative sample of pairs of closely related languages (with a roughly
similar time of divergence). This gives us an additional statistic, the fre-
quency h of divergent pairs – an estimate of divergence rate, which can
significantly restrict the set of possible diachronic scenarios (hence, of plau-
sible linguistic interpretations of typological tendencies). Methodologically,
the proposed technique remains within the realm of (synchronic) typology,
in the sense that only present feature values are sampled; no reconstructions
are needed.

Plan:

1. The evolution of language population: a stochastic model

2. Stochastic versions of linguistic hypotheses

3. What can the divergence rate tell us?
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2 Model

2.1 Temporal scale

For the sake of simplicity, I will talk in terms of discrete-time model, i.e., all
processes going on in the language population will be modeled in terms of
temporal “steps”. I will assume that a reasonable time interval corresponding
to such a “step” is one thousand years. I will further assume that there can
be no plausible hypotheses concerning typological distributions 10000 years
(10 “steps”) ago, but

• The language population has been sufficiently large for typological
statistics during these 10000 years.

• It is likely that languages spoken within this time interval instantiated
essentially the same universal phenomenon as the modern languages.

2.2 Birth-and-death process

• The birth-and-death process in the language population (so-called “his-
torical accidents”) can significantly affect typological distributions if
the population is relatively small (this is why there are no plausible
hypotheses about typological distributions 10000 years ago), but

• Its impact cannot be significant in a large population; so, in the present
context, these potential effects can be neglected.

The last result appears to be counterintuitive to many typologists (what
may be true in a mathematical model, need not be valid in the “real life”).
Therefore, I will present a “real-life” example that illustrates the same point.
The example is based on Maddieson’s (1984) phoneme inventory sample;
there are multiple “types” corresponding to the number of vowel phonemes.
Figure 2 shows the impact of birth-and-death process on this distribution
over ca. 7000 years (from –8000 to –1000), that is, the difference between
the distribution in Maddieson’s sample and the distribution in a random
sub-sample containing one language per major linguistic family.
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2.3 Type-shift process

I will consider only two-type typologies T = {A, B}; the present distribution
is F = {f(A) = f, f(B) = 1 − f}. For the sake of simplicity I will assume
here and below that f ≥ 1 − f . The type-shift process is described by the
following matrix:

“target type”: A B
“source type”: A 1− q q

B p 1− p

If the frequency of type A at some step k is f (k), then its frequency at the
next step is expected to be around f (k+1):

f (k+1) = f (k) · (1− q) + (1− f (k)) · p (1)

If p and q are constant during n steps, the resulting frequency f (n) of type A
is given by the following equation:

f (n) = f (0)(
p

p + q
+

q(1− p− q)n

p + q
) + (1− f (0))(

p

p + q
+

p(1− p− q)n

p + q
) (2)

The rate of the process (the number of “steps” which makes f (n) indepen-
dent of f(0)) is determined by α = p + q; the resulting limiting (stationary)
distribution, by p

q
. Thus, if the present distribution is independent of the

initial distribution, then the following equation holds:

f

1− f
' p

q
(3)

This means, roughly speaking, that to say that a higher frequency f manifests
a “linguistic preference” means to say that p > q, or in other words, that
the would-be stationary frequency f∞ is higher than 1

2
.
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3 Testing linguistic hypotheses

3.1 Stochastic versions of linguistic hypotheses

One can think of two “extreme” hypothesis about the regular-
ities of language change (and their “relation” to the current
synchronic distribution). First, we might want to test the Hy-
pothesis of Stationary Distribution, that is, roughly speak-
ing, that the synchronic distribution is determined solely by
transition probabilities (plus random deviations δ due to the
birth-and-death process). The opposite extreme is the hypoth-
esis of absolutely random (linguistically unmotivated) language
change; that is, p = q (null hypothesis).

Since HSD is impossible to confirm or reject in most cases,
we would like to be able to test weaker hypotheses: for example,
if the current frequency of some type is 0.95 and we are unable
to confirm that this distribution is stationary (that is, that r =
p/q ≈ 19), we may still be able to confirm something more
significant than p > q, e.g., that r > 2 or r > 3. Similarly, if
the current distribution is even (f ≈ 1 − f), it would be nice
to be able to say something like 0.5 < r < 2 – that is, even
if we cannot claim that p = q, we might be still able to claim
that these parameters do not differ too much. I will refer to this
family of hypotheses as R-hypotheses.

One can also think of two Unidirectionality Hypotheses
(p = 0 and q = 0): what we observe now is just an interme-
diate stage of the evolution of language population from one
“universal” type to another (either from A to B, or vice versa).
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3.2 What can the divergence rate tell us?

The vaule of divergence rate in the present language popula-
tion is determined by the following equation:

DV = P (AB) = 2f (−1)q(1− q) + 2(1− f(−1))p(1− p) (4)

where f (−1) is the frequency of A one “step” ago. The frequency
h of divergent pairs in a random sample of pairs can serve as
an estimate for DV. Equation (1) can be used to exclude the
unknown parameter f (−1):

h ' P (AB) = 2(f − p)(q − p) + 2p(1− p) (5)

Now we have two equations, (5) and 2, for three unknown pa-
rameters (f (0), p and q), which may seem to make the situation
hopeless. Indeed, we cannot give precise estimates for p and q.
What we need, however, is to be able to confirm R-hypotheses.
To do so, we will need to consider the “worst” possible f0.

Let the R-hypothesis we wish to confirm be p ≥ rq: in other
words, we want to confirm that the large number of A-languages
now is determined by large p and not by a large number of A-
languages in the initial distribution. Hence, the worst f0 will be
f0 = 1 (that is, roughly speaking: 10000 years ago there were
only A-languages, and the population slowly drifts towards the
B-only distribution). Similarly, if our R-hypothesis is p ≤ q,
then the worst case is f0 = 0.
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Consider a constructed example illustrated in Figure 3. The observed fre-
quency is f = 0.75 (like in Figure 1). However, now that we have an estimate
for p(AB) and equation 5, some of the theoretically possible diachronic paths
can be rejected. In particular, if p(AB) > 0.10, then we can say that

1.1q < p < 17.9q, (6)

which means that:

0.52 < P stat(A) < 0.95. (7)

Thus, although we can neither reject nor confirm the hypothesis of stationary
distribution, we do get some essential information: p must be at least slightly
higher than q (otherwise, the current frequency would be lower than 0.75−δ
even if the initial frequency was 1. On the other hand, it must be less than
18q – otherwise, the current frequency would be higher than 0.75 + δ even
if the initial frequency was zero. Note that this means that we have also
rejected both unidirectionality hypotheses.

With some reservations to be discussed below, the higher the divergence
rate, the better our estimates: roughly speaking, a higher divergence rate
means that the process is faster, so the current frequency must be closer to
the stationary probability. For example, if p(AB) > 0.20, then we can say
that

1.9q < p < 5.2q, (8)

which means that:

0.66 < P stat(A) < 0.84. (9)

On the other hand, if p(AB) can be less than 0.05, than we cannot con-
firm/reject any hypotheses (with this method, of course).
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3.3 A “real-life” example

According to Maddieson, the present frequency of vowel systems
with five or more vowels is f = 0.90. The minimum of diver-
gence rate can be estimated as 0.066 (5 pairs out of 74 found in
Maddieson’s sample). This gives us a (relatively) strong lower
bound for p/q (p > 2q), which corresponds to the minimum of
stationary probability P stat(n(v) > 4) > 0.67. Yet the unidirec-
tionality hypothesis cannot be rejected (i.e., it may be the case
that q = 0, that is, 5-vowels languages do not lose vowels.)

On the other hand, the frequency of vowel systems with six or
more vowels is f = 0.67, the minimum of DV can be estimated
as 0.256 (21 pairs), which gives us the following estimates:

1.33q < p < 3.35q, (10)

which means that:

0.57 < P stat(n(v) > 5) < 0.77. (11)

This means that we can safely assume that (1) the statistical
predominance of languages with more than five vowels is moti-
vated by stochastic properties of language change, but (2) the
existence of smaller systems is also not a trace of the previous
stage of evolution of the language population.
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