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Part I

Quantitative typology: the why and
wherefore

1 Why quantitative (statistical) typology?

How to calculate the probability of an existing exception being present in a sample?
Counting techniques. The basic idea is to count the number of outcomes corresponding to an
occurrence of an event and to divide it by the total number of possible outcomes. In our case, the
number of samples containing an exception should be divided by the total number of all samples
of the same size. The most important idea for all such calculations is that if one operation can be
performed in n1 different ways and the other, in n2 different ways, then the total number of ways
in which both can be carried out is n1n2.
Permutations: How many different orderings are possible for a collection of n items?

Pn = n!

.
Permutations of r items selected from a set of n elements: If we select r items from a
collection of n items, the number of possible permutations is

nPr =
n!

(n− r)!

Combinations: The number of possible combinations of r items from a collection of n (if the
order is irrelevant) is (

n

r

)
=

n!
r!(n− r)!

Note that this is the total number of possible samples of size r from a population of size n.

Distinguishable vs. indistinguishable objects. From the point of view of a specified
typology, languages that belong to the same type are indistinguishable; only types are distin-
guishable. In particular, we do not care which particular languages represent a given type in our
sample; we are only interested in the total number of such representatives.

Example 1. A universal with a single exception. Assume there is a single exception from a
universal among the total of N languages. The number of samples of size n containing this
single exception is equal to the total number of samples of size n − 1 from the other N − 1
languages: (

N − 1
n− 1

)
=

(N − 1)!
(n− 1)!(N − n)!

To obtain the probability P (E) of finding the exception, we divide this expression by
(
N
n

)
and

get:
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P (E) =
(N − 1)!n!(N − n)!
N !(n− 1)!(N − n)!

=
n

N

What if there are k exceptions? Using the techniques already introduced, we can easily calculate
the probability pk of there being no exceptions in the sample, hence the probability qk = 1− pk of
at least one exception.

n q1 q10 q60

50 0.01 0.08 0.39
100 0.02 0.15 0.63
300 0.05 0.39 0.95
600 0.10 0.63 1

Table 1: The probability qk of finding at least one of k exceptions in a random sample
of size n (for N = 6000)

We can achieve some degree of confidence as far as low probability of occurrence is concerned,
yet not for absolute universals.

This opens the possibility of new types of questions: if a statement of likelihood less than 0.01
is interesting, than why not about less than 0.10?

2 Dependencies

A special, particularly famous new type of information has to do with dependencies between different
language properties (“correlations”).

Example 2. Implicational universals of comparative constructions. Leon Stassen introduces
a typology of comparative constructions, which comprises, among other types, EXCEED-
comparative and Separative Comparative. These seem to be linked to the basic word order:

Basic word order: SVO Other
EXCEED-comparative 20 0
Other 15 75

Basic word order: V... or ...V ...V...
Separative comparative 31 1
Other 42 36

Example 3. Word order correlations: adpositions. The following figures (based on Dryer’s
data) appear to indicate a dependency between the relative order of verb and object and the
locus of adpositions (post- vs. prepositions):

VO OV
Postpositions 9 87
Prepositions 62 5
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Part II

Statistical data and statistical inference.
Inferences and explanations in typology

1 Basic description

1.1 Distribution

A basic description for a set of statistical data invokes “individuals” and “variables”. For typol-
ogy, “individuals” would generally mean “languages” (with some important qualifications), and
“variables” would mean“typological parameters”. Most typological parameters are categorical
variables, that is, they classify languages into several groups, or categories (such as, e.g. the exis-
tence of nasal vowels); some are quantitative, that is, each language is assigned a numerical value
(e.g. the total number of vowels). The distribution of a variable is the set of possible values and
their frequencies.

Example 4. Basic word order. Russel Tomlin classifies all languages into six “basic word order”
types, based on the most frequent relative order of lexical subject (S), lexical object (O) and
the verb (V) in finite clauses, and obtains the following distribution (in a set of 402 languages):

absolute relative
SOV 180 0.45
SVO 168 0.42
VSO 37 0.09
VOS 12 0.03
OVS 5 0.01
OSV 0 0.0
Total 402 1

This is how often the categorical variable “basic word order” takes each of its values in
Tomlin’s sample of languages.

Example 5. Morphological complexity. Johanna Nichols counts the total number of mor-
phemes coding grammatical relations in a pre-defined set of distinct grammatical constructions
. This is a quantitative variable which can, in principle, take any integer value from 0 to 27.
Its distribution in the set of languages explored by Nichols is as follows:
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Complexity Number of languages Frequency
2 7 0.032
3 4 0.018
4 19 0.086
5 13 0.059
6 31 0.140
7 23 0.104
8 32 0.144
9 20 0.090
10 20 0.090
11 18 0.081
13 8 0.081
14 5 0.036
15 3 0.023
16 1 0.014
Total 210 1

1.2 Mean

The distribution of a quantitative variable allows for a much broader range of relative descriptive
measures than a categorical variable.

The mean value of a variable is the sum of the values observed in all observations divided by
the number of observations:

(1) x̄ =
x1 + x2 + ... + xn

n
=

1
n

n∑
i=1

xi

If vj denote the values of the variable, and nj denotes the number of observations where vj is
observed, then

(2) x̄ =
1
n

k∑
j=1

vj · nj ,

where k is the total number of possible values.
For example, the mean value of Nichol’s measure of morphological complexity is 8.1.

1.3 Order statistics and median

The sample median is the most broadly used order statistic. Assume we list all outcomes Yj

(j = 1, ..., n) so that the observed value never decreases (Yj 6 Yj+1). Then Y1 is the smallest
order statistic, Yn, the largest order statistic. If n is odd, then the sample median is the middle
observation, Yk for k = (n + 1)/2; if n is even, then it is any value between Yk and Yk+1, where
k = n/2. x%-percentile is Yk for the closest k 6 x

100n.
Exercise: Find the median, the 25%-percentile and the 75%-percentile for Nichols’ complexity
sample.
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1.4 Variance

The measure of variability of the variable in a sample is the sample variance. The sample variance,
s2, is defined as

s2 =
n∑

i=1

(xi − x)2

n− 1

For example, the sample variance of morphological complexity, as examined by Nichols is 9.24.

2 Inferences

The fundamental idea of inferences from statistical data is that if we repeat a certain experiment
multiple times, the results would be roughly similar; put it the other way round, a single experiment
(e.g. one sample) gives us some information about what would happen in other experiments of the
same sort, and this why its result are of interest.

For plain descriptive quantitative typology, this can be translated as follows. Assume we have
defined a population in a certain way; it is a finite set of similar individuals with an unknown
distribution of cross-linguistic variables. Further, we have chosen (“sampled”) a subset of n
elements of this set, following certain rules of randomness (for our purposes, let us assume that
all individuals had exactly the same probability of making it into our sample), and analyzed the
distribution of our variables in this sample. Under these conditions, if n is reasonably large, we
can believe that most of the other possible samples of the same size and chosen in the same way
from the same population will have roughly the same properties, and this gives us the possibility
to infer the properties of the population from the properties of a sample. At this purely descriptive
level, the validity of such inferences is guaranteed simply by randomness of sampling.

Genuinely linguistic problems arise if we wish to draw inferences not about a concrete finite
population of languages, but about a language as a general phenomenon. For theoretical typology
the issue is to construe each specific language as a “trial” of the same phenomenon; and here is
where lots of empirical problems arise.

Two types of empirical observations that create problems: genetic similarities and differences
between geographical areas.

Example 6. Genetic groupings as individuals. Johanna Nichols devised a three-layer system
for this type of sampling (this system also has an area-oriented component, not discussed
here).

In her terminology (24-25), the family is a genetic grouping of a time depth around ca. 2500-
4000 years, like the older branches of Indo-European (i.e. Balto-Slavic). The stock corresponds
in effect to the highest level reconstructible by the comparative method (the estimated time
depth is 5000-8000 years). Each family (present within one of the pre-defined geographical
areas) is represented in the sample by a single language, which thus assigns the “type-values”
to the whole family. Some effort has been made to exclude languages representing non-
dominant types, i.e. languages considered atypical of their families were avoided (there were,
however, some exceptions from this rule). Assuming that the intra-family frequencies of
dominant typological values are close to unity, the naturally high probability of representing
a family by its dominant value was additionally increased by non-randomness introduced in
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the sampling procedures: on average, a language with a dominant value had a greater chance
of being included in the sample (although how exactly these probabilities differ, is hard to
estimate).

Each stock containing six or less families is represented by all its families; for stocks that have
branched into more families, there was an upper limit of six families. These families have been
apparently also selected not quite randomly: first, they have been distributed between geo-
graphical areas, and secondly, an attempt was made to cover “the known typological range”
of each stock. Thus, while for families the potential effects of intra-family variability were
decreased by the sampling procedure, the intra-stock variability was effectively increased by
the sampling procedure. Insofar as stocks contain more than one family, the typological vari-
ables defined at this level are various descriptive measures of the corresponding family-based
distributions (like the mean values, the total numbers of represented types, the frequency of
dominant type, etc.). Here, for example, are values for the stock-level variable corresponding
to the sample mean of morphological complexity:

Stock Lgs Mean complexity
Afroasiatic 4 11.8
Niger-Kordofanian 6 7.3
Indo-European 5 9.4
Uralic-Yukaghir 4 10.5
Pama-Nyangan 6 9.7
Austronesian 6 7.5
Uto-Aztecan 4 9
Penutian 5 10.6

Example 7. Areas as individuals. Matthew Dryer (1989) divided the world into six large areas,
with the basic idea that a linguistic preference can be established only if it is supported
by statistical data from each area. His raw data on representation of basic word orders is
summarized in the following table.

Africa Eurasia Australia North America South America Total
SOV 22 26 19 26 18 111
SVO 21 19 6 6 5 57
Other 2 7 5 28 8 50
Total 45 52 30 60 31 218

Each statement of the form “Type A occurs more frequently than type B” can be evaluated
as true or false for each area separately. In other words, each area functions as an individual
for which a binary variable is defined. For example, for the statement “SVO occurs more
frequently than SOV”, individuals-areas are characterized by the following values:
f(SV O) > f(SOV ) Africa Eurasia Australia North America South America

Yes Yes Yes Yes Yes

Dryer’s idea is that the probability of obtaining five “Yes” by chance (that is, under the
assumption that “Yes” and “No” are equally likely, and the values for all areas are mutually
independent) equals 1

32 . Accordingly, a linguistic preference for SVO over SOV is considered
as established.
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On the other hand, the corresponding values for the binary variable “SOV occurs more fre-
quently than all non subject-initial orders” assumes the following values:

f(SOV ) > f(other) Africa Eurasia Australia North America South America
Yes Yes Yes No Yes

Accordingly, this statement does not reflect, according to Dryer, a genuine linguistic prefer-
ence.

Is Dryer’s estimate of the probability of establishing a “wrong” linguistic preference correct?

Exercise questions:

1. A linguist wants to establish the distribution of a certain cross-linguistic variable. She selects
100 languages at random from a complete list of languages, and the grammars of 81 of them
are found in the library. What is the population under study?

2. In the same situation, it turns out that only 56 of 81 grammars actually describe the phe-
nomenon under analysis in a satisfactory fashion. The same question, what is the population?

3. A linguist selects at random a single language from each genetic stock. What is the population
under study? Assuming the variable under analysis has an extremely rare value, has the
probability of finding this value changed (as opposed to a random sample)? If yes, then how
and why?
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Part III

Probability

1 Sample space, outcomes, events

“Experiment” is the process of obtaining an observed result. A performance of an experiment is
called a trial, and an observed result is an outcome. The set of possible outcomes is called the
sample space (one one outcome is supposed to occur on any given trial).

Example 8. A word order experiment. Suppose we are interested in the order of major clausal
constituents, SOV. Then, a possible outcome of an experiment is a set of orders possible in
the language. There are 26−1 possible outcomes: in principle, any of six possible word orders
can either possible or impossible, yet it cannot be the case that all orders are disallowed. The
sample space is a set of all possible subsets:

{{SOV, SV O, V SO, V OS,OSV, OV S}, {SOV, SV O, V SO, V OS, OSV }, ...{OV S}}

.

Example 9. Simple word order flexibility experiment. If we are interested in the word or-
der flexibility, a possible measure would be the total number of possible orders. The appro-
priate sample space, then, is {1, 2, 3, 4, 5, 6}.

Example 10. Simple basic word order experiment. If we are interested in only in the dom-
inant (basic) word order, the sample space consists simply of all six possible orders

{SOV, SV O, V SO, V OS,OV S, OSV }

.

Example 11. Area-oriented basic word order experiment. If in Example 10 we wish to con-
trol for geographical area (as Dryer does), we would note, along with the dominant order, the
area in which language is spoken. Assuming there are five major areas (as in Dryer’s study),
the sample space would contain 30 pairs < order, area >:

{< SV O, Africa >, < SV O,Eurasia > ...}

.

Example 12. Nichols’ complexity. Nichols examines nine different construction types; in each
construction type, the relation between constituents can be coded in three locations: on the
head constituent, on the dependent constituent, or by a free marker. This gives 27 possible
loci for grammatical markers. The result of experiment is a sequence of 27 ”Yes/No” answers
(corresponding to the presence/absence of a marker). The sample space consists of 227 possible
outcomes. If, however, we are interested in morphological complexity (the total number of
markers in all constructions), the sample space consists of 28 integers from 0 to 28.
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A sample space is finite if it consists of a finite number of outcomes, and it is countably infinite
if its outcomes can be put into one-to-one correspondence with the positive integers. A discrete
(countable) sample space is a sample space that is either finite or countably infinite. Otherwise, it
is a continuous sample space.

Example 13. Word order flexibility: continued. A possible simple measure of word order
flexibility is the actual frequency of the most frequent (“dominant”) word order, which can
be obtained by text counts: in a set of similar texts in different languages, we can count the
total number of independent transitive clauses containing all three relevant constituents (N),
and the number of such clauses with the dominant order (n). The outcome of an experiment
is the ratio n

N . In this case, the sample space can be thought of as continuous, i.e. as a set
of all real numbers (0, 1(6); 1]. A more thorough study can include frequencies of all possible
word orders. Then, the sample space would be a five-dimensional space, with the values along
each dimension ranging from 0 to 1, with the additional constraint that their sum is less or
equal to one (the space is five-dimensional because the sixths value is uniquely determined by
the other five).

An event is a subset of the sample space. An event has occurred if it contains the outcome
that occurred. An elementary event contains a single outcome. The whole sample space is a
special kind of event (sure event), and the empty set is the “null event”. If the intersection of
two events is empty, they are referred to as “mutually exclusive”. More than two events are
mutually exclusive if they are pairwise mutually exclusive.

To illustrate the concept of event, consider Example 10. An event “S precedes O” is the following
subset of outcomes {SOV, SV O, V SO}. For a sample space of Example 8, an event “S always
precedes O” would contain outcomes which do not include either of orders V OS, OSV,OV S. There
are 23 − 1 = 7 outcomes in this event:

E = {{SOV, SV O, V SO}, {SOV, SV O}, {SOV, V SO}, {SV O, V SO}, {SOV }, {SV O}, {V SO}}

If the sample space is continuous, an event would be defined as a region in this space. So, if we
measure the frequency of dominant order (Example 13), we can define an event like “Word order
is flexible” if the frequency of the dominant order is less than 0.50, i.e E = (0.16(6), 0.5).

2 Probability

2.1 Definition

A set function that associates a real value P (A) with each event A is called a probability set
function, and P (A) is called the probability of A if the following properties are satisfied:

0 6 P (A) for every A(3)
P (S) = 1 (S is the sure event)(4)

P (
∞⋃

i=1

Ai =
∞∑

i=1

P (Ai) if A1, A2 . . . are mutually exclusive events.(5)
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2.2 Basic properties

• If A is an event and A′ is its complement, then P (A) = 1− P (A′).

• For any event A, P (A) 6 1.

• For any two events A and B, P (A ∪B) = P (A) + P (B)− P (A ∩B).

• For any three events,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (A ∩ C) + P (A ∩B ∩ C)

• If A ⊂ B then P (A) 6 P (B).

• Boole’s inequality For any sequence of events A1, A2, ...

P (
∞⋃

i=1

Ai 6
∞∑

i=1

P (Ai)

A similar result holds for finite unions.

• Bonferroni’s inequality For any sequence of events A1, A2, ...

P (
∞⋂

i=1

Ai > 1−
∞∑

i=1

P (A′i)

3 Conditional probability

3.1 Definition

The conditional probability of an event A, given the event B is defined by

P (A|B) =
P (A ∩B)

P (B)

if P (B) 6= 0. Relative to the sample space B, conditional probabilities satisfy the original definition.

Example 14. Type and Area. In Nichols (1986), 15 of languages of North America are classified
as head-marking, whereas the other eight North-American languages in the sample are not
head-marking. What is the conditional probability that a randomly chosen language from
this sample turns out to be head-marking if it is already known that it is spoken in North
America?

Of the other languages in her sample, only two are classified as head-marking. What is the
conditional probability that a language from this sample is from North America if we already
know that it is head-marking?
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3.2 Multiplication theorem

For any events A and B,

P (A ∩B) = P (B)P (A|B) = P (A)P (B|A)

Example 15. Sampling without replacement. Imagine there is a genetic group containing 40
languages, 10 of which have SVO as their basic order (figures adjusted from Tomlin’s sample
data for Afroasiatic). What is the probability that the two first randomly selected languages
will be SVO?

A1 A
′

1

A2 10 · 9 30 · 10 10 · 39
A
′

2 10 · 30 30 · 29 30 · 39
10 · 39 30 · 39 40 · 39

P (A1 ∩A2) = P (A1) · P (A2|A1) =
10
40
· 9
39

= 0.06

4 Total probability and Bayes

If B1, B2, ..., Bk is a collection of mutually exclusive and exhaustive (B1 ∪ . . . ∪ Bk = S) events,
then for any event A,

P (A) =
k∑

i=1

P (Bi)P (A|Bi)

Example 16. Genetic sampling. In many typological studies, the probability of a language be-
ing represented in the sample depends on the total number of languages in the same genetic
group (and/or on its branching structure). Let ni be the pre-determined number of languages
from the i-th group to be included in the sample, Ni, the total number of languages in this
group. The conditional probability of a language being represented if it belongs to the i-th
group is

pi =
ni

Ni
.

The probability that a randomly selected language belongs to the i-th group is Ni

N , where
N =

∑
i Ni. Then, the probability of a language being represented is

P =
∑

i

pi ·
Ni

N
=

∑
i

ni

Ni

Ni

N
=

1
N

∑
i

ni

Now let Mi be the number of languages of a certain type in the i-th group (M =
∑

i Mi),
and assume we have decided to chose exactly one language from each group (ni = 1). What
is the probability P ′ of a random language of this type being represented in our sample?
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Bayes’ Rule For a set of exhaustive mutually exclusive events Bi, and for each j = 1, . . . , k:

(6) P (Bj |A) =
P (Bj)P (A|Bj)∑k
i=1 P (Bi)P (A|Bi)

Example 17. Comparative constructions and Bayes rule. The following table gives the prob-
abilities that a languages has SOV as its basic word order under the conditions of known pri-
mary type of comparative construction (according to Stassen (1985)), and the probabilities
of these comparative types.

P (SOV |Ci) P (Ci)
C1 = Separative 0.88 0.3
C2 = Allative 0.14 0.06
C3 = Locative 0.67 0.11
C4 = Exceed 0 0.19
C5 = Conjoned 0.56 0.17
C6 = Particle 0.21 0.18

The Bayes rule gives us the probabilities of comparative type under the condition that we
know that the language’s basic word order is SOV, e.g.

P (Separative|SOV ) = P (C1|SOV ) =
P (C1)P (SOV |C1)

P (SOV )
=

0.88 · 0.3
0.45

= 0.59

The knowledge of the basic word order makes the hypothesis of Separative comparative type
nearly twice more likely.

Example 18. Type and family. Assume that a half of all languages belong to a certain type T ;
also, we assume that, for a certain genetic classification, 0.9 of all languages in each group
belong to a single type (in the corresponding typology). What is the probability of a language
chosen at random belonging to T? If we have chosen a language from a certain family and it
turned to belong to T , what is the probability that another language randomly chosen from
the same group would also belong to T?
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Part IV

Random variables

1 Random variables and typological parameters

A random variable (say, X) can be defined as a function over a sample space, which associates a
real number with any possible outcome. The probability distribution function of a random variable,
then, is a function f(x), which assigns to each number x the probability of the corresponding
outcome. Thus, in principle, one can define a random variable for any parameter of typological
variation, and it can be useful in a broad range of contexts. However, if the parameter is essentially
categorical, one has to be cautious, since some important properties of the resulting random variable
can turn out to depend on how exactly it is defined.

A notable exception is constituted by binary parameters, for which a random variable can be
defined straightforwardly: one value (interpreted as a “positive outcome”) would be associated
with “1” and the other (“negative outcome”), with “0”. Such a variable is known as Bernoulli
variable. If the probability of the positive outcome is p and the probability of the negative outcome
is q = 1− p, then the probability distribution function of the variable is

(7) f(x) = pxq1−x

If X is a random variable, and f(x), its probability distribution function, then the expected
value of X is

(8) µ = E(x) =
∑

x

xf(x)

For example, the expected value of a Bernoulli variable is equal to the probability of its positive
outcome (µ = 1 · p + 0 · q = p).

Note that the expected value of a random variable is conceptually related to the familiar mean
(the average) of a distribution in a sample:

(9) x̄ =
x1 + x2 + ...xn

n
=

1
n

n∑
1

xi

For a Bernoulli variable, for example, xi can assume two values, 0 and 1. If the outcome ”i” is
observed in ni trials (n0 + n1 = n), this can be rewritten as

(10) x̄ =
1∑
0

i · ni

n
=

n1

n
,

that is, the mean value equals the relative frequency of the positive outcome.
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The second important property of a random variable is its variance, which provides a measure
of the variability (or dispersion) in the distribution. The variance is defined as the expected value
of the function u(x) = (x− µ)2, i.e.

(11) σ2 = Var[X] = E[(X − µ)2].

The standard deviation, σ, is the positive square root of the variance.
It is often easier to calculate the variance using the following equation:

(12) Var(x) =
∑

x

(x− µ)2f(x) = E[x2]− µ2

The variance of a Bernoulli variable:

(13) σ2 = (0− p)2 · q + (1− p)2 · p = p · (1− p) = pq

Note that the maximum variance is achieved for p = q = 1/2, and the variance tends to zero as
any of these values tends to 1. This conforms well with the intuitive concept of linguistic variability:
the more probable one of the values, the less the cross-linguistic variability (in the extreme case of
one of the probabilities being equal to one, we have a universal, i.e. no variability at all).

Example 19. Alignment as a random variable. Obviously, it would be useful to extend this
measure of variability to non-binary parameters. This approach is used by Johanna Nichols
to estimate and compare the amount of variability for different typological parameters. For
example, she divides alignment mechanisms into three numerical “gross types”, so that “1”
is assigned to various split systems, “2” to accusative and neutral, and “3”, to ergative
mechanisms. Based on her data, we can assign the following probability distribution function
to this variable (this takes into account all potential “locations” of an alignment mechanism,
namely, nouns, pronouns, and verb agreement): f(1) = 0.07, f(2) = 0.81, f(3) = 0.12. The
expected value of this variable is, then:

µ = 0.07 + 2 · 0.81 + 3 · 0.12 = 2.05

The variance is:

σ2 = (0.07 + 4 · 0.81 + 9 · 0.12)− 2.052 = 0.19

Since the assignment of numerical values is arbitrary, we could as easily say that “1” is
accusative/neutral, “2” is ergative and “3” is split. Then, the distribution would be p(1) =
0.81, p(2) = 0.12, p(3) = 0.07. The expected value would be

µ = 0.81 + 2 · 0.12 + 3 · 0.07 = 1.26

And the variance would be much higher:
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σ2 = (0.81 + 4 · 0.12 + 9 · 0.07)− 2.052 = 0.33

Thus, if we arbitrarily assign numerical values to non-binary categorical parameters, we can,
quite accidentally, heavily influence the results. The only general way of avoiding this problem is
ranking, that is, we have to order the values so that their probabilities decrease (or rather, never
increase), and use the ranks as the values of our random variable.

Example 20. Morphological complexity. Recall that Nichols’ measure of morphological com-
plexity amounts to the total number of morphological markers in N = 27 potentially possible
locations in different constructions. Imagine, as a simplistic model of this phenomenon, that
a marker appears in each location with the same probability p, independently of whether
other markers are present. What is, then, the probability that the morphological complexity
(i.e. the total number of markers in all locations) will be exactly n? The number of ordered
arrangements of n locations from N possible locations is N(N − 1)...(N − n + 1) = N !

(N−n)! .
The number of different possible orders (permutations) of n locations is n!. Thus, the number
of ways of choosing an unordered set of n locations is(

N

n

)
=

N !
n!(N − n)!

The probability of any such set is pn(1 − p)n. Thus, the probability of morphological com-
plexity n, counted for N possible locations is:

P (n;N, p) =
(

N

n

)
pn(1− p)N−n

For N = 27 and p = 1
3 , we get a distribution remarkably close to the empirical one obtained

by Nichols.

This is an example of binomial distribution, the distribution of sum of n independent identical
Bernoulli variables.

(14) f(x;n) =
(

n

x

)
pxqx( Mean: np, Variance: npq)

2 Sampling distributions

Example 21. Sampling from Areas. When we sample languages, we usually sample without
replacement. This is not very important if a small set of languages is selected from a large
language population. However, it does become extremely important for a sampling procedure
invented by Dryer.

Assume there are N genera in an area, and M of them belong to a particular type. What is
the probability of finding exactly x languages of this type in a sample of size n? The sample
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space is a collection of all subsets of size n; there are
(
N
n

)
of these. There are

(
M
x

)(
N−M
n−x

)
outcomes where the number of M-languages is exactly x. Hence,

P (x) =

(
M
x

)(
N−M
n−x

)(
N
n

)
Hypergeometric distribution:

f(x;n) = P (x) =

(
M
x

)(
N−M
n−x

)(
N
n

)
Mean:

nM

N
, Variance: n

M

N
(1− M

N
)
N − n

N − 1

3 Discrete, continuous, and mixed

Example 22. Greenbergian morphological complexity. Consider a measure of morphologi-
cal complexity defined as the mean number of morphemes per word. If it is studied typolog-
ically, we will consider, for each language Li, a selection of texts with a total length of Ni

words, and note the number of morphemes Mi in this selection. The results of our observa-
tions could be represented as a discrete set of n outcomes (Xi = Mi

Ni
), each of which would

probably occur no more than one or two times. However, it is usually appropriate to consider
an idealized situation in which X can assume any value in some interval.

One way to study this distribution would be to consider the relative frequency of languages
for which Xi is less than x, i.e. to analyze its cumulative distribution function F (x). The
cumulative distribution function of a random variable is defined by F (x) = P [X 6 x]. The
simplest “null” hypothesis would be to suggest that F (x) grows proportionally with x, i.e.
F (x) = cx. Another would be to consider the relative frequencies of outcomes within some
small intervals (e.g. P [0.05 < X 6 0.1] = F (0.1)− F (0.05). If our hypothesis is correct, this
probability must be 0.05c.

Under some conditions of regularity, which we will not discuss, the derivative of F (x) of a con-
tinuous random variable is called its probability density function, so that the cdf can be represented
as

F (x) =
∫ x

−∞
f(t)dt

Obvious conditions are

f(x) > 0∫ ∞

−∞
f(t)dt = 1

The expected value of a continuous variable is defined by∫ ∞

−∞
xf(x)dx
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Example 23. Mixed typological parameters. Some cross-linguistic variables are best described
as “mixed”, partly continuous, partly discrete. This is the best approach, for example, if some
sort of constraint works as an absolute grammatical constraint in some languages and as a
“soft” preference in other languages. Consider, for example, the tendency to drop indepen-
dent subject pronouns. The frequency of subject pronouns can be either zero (if a language
doesn’t have any) or positive (if it does). The corresponding form of the cumulative distribu-
tion function would be

F (x) = aFd(x) + (1− a)Fc(x)

where a is the probability that a language has no subject pronouns, Fd(x) = 1, and Fc(x) is
the conditional distribution function, under the condition that the language does have subject
pronouns.

4 Some special distributions

4.1 Uniform

Uniform discrete (DU(N))

(15) f(x) =
1
N

x = 1, 2, ...N , E(X) =
N + 1

2
,Var(X) =

N2 − 1
12

Uniform continuous (UNIF(a, b))

(16) f(x) =
1

b− a
a < x < b, E(X) =

a + b

2
,Var(X) =

(b− a)2

12

4.2 Geometric and Negative binomial

The number of trials required to obtain the first success (GEO(p)):

(17) g(x; p) = pqx−1 x = 1, 2, 3, E(X) =
1
p
,Var(X) =

q

p2

The number of trials required to obtain r successes.

(18) f(x; r, p) =
(

x− 1
r − 1

)
prqx−r x = 1, 2, 3, E(X) =

r

p
,Var(X) =

rq

p2

4.3 Exponential

(19) f(x; θ) =
1
θ
e−x/θ, F (x; θ) = 1− e−x/θ x = 1, 2, 3, E(X) = θ, Var(X) = θ2
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4.4 Normal distribution (N(µ, σ2))

(20) f(x;µ, σ2) =
1√
2πσ

e−[(x−µ)/σ]2/2, E(X) = µ,Var(X) = σ2

Standard normal (N(0, 1))

z =
x− µ

σ

(21) φ(z) =
1√
2π

e−z2/2
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Part V

Dependencies and correlations

1 Independent events

Two events, A and B, are called independent if P (A∩B) = P (A)P (B); an equivalent formulation:
P (A|B) = P (A) (P (B|A) = P (B)).
A and B are independent if and only if A and B′, A′ and B, A′ and B′ are also independent.
The k events A1, A2, . . . , Ak are (mutually) independent if for every subset of distinct indices
j1, . . . , ji

P (Aj1 ∩ · · · ∩Aji) = P (Aj1) · · ·P (Aji)

Note that it is not sufficient to verify pairwise independence.

2 Joint distributions

The joint probability density function of k discrete random variables X1, . . . , Xk is defined as
f(x1, . . . , x2) = P [X1 = x1 ∩ . . . ∩Xk = xk] for all vectors of possible values.

The joint cumulative distribution function is F (x1, . . . , x2) = P [X1 6 x1 ∩ . . .∩Xk 6 xk] for all
vectors of possible values.

For continuous random variables, the joint probability density function f(x1, . . . , x2) is a func-
tion defined by the following condition

F (x1, . . . , xk) =
∫ xk

−∞
· · ·

∫ x1

−∞
f(t1, . . . tk)dt1 · · · dtk

Example 24. Nominative and ergative mechanisms of case marking. One cross-linguistic
Bernoulli variable can be defined as the use of nominative-accusative mechanism for discrim-
ination of core participants of transitive verbs; let’s say that Nom = 1 if this mechanism is
employed in a language and Nom = 0 otherwise. Accordingly, Erg = 1 if the ergative mecha-
nism is employed and Erg = 0 otherwise. The joint distribution of these variables (estimated
for the language population) can be represented by the following table:

Erg = 1 Erg = 0
Nom = 1 0.06 0.35 0.41
Nom = 0 0.11 0.48 0.59

0.17 0.83 1

Example 25. Sampling for k-ary typology. Suppose we study intra-family distributions for
a three-way typology, e.g. “nominative”, “ergative” and “other”. A family consists of 100
languages, 70 of them are nominative, 10 ergative and the other 20 do not fit into either of the
clear cut types. For our study, we select 15 languages at random (without replacement). Xn

is the number of nominative languages in our sample, Xe, the number of ergative languages.
The joint probability function for the pair Xn, Xe is
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f(xn, xe) =

(
70
xn

)(
10
xe

)(
20

15−xn−xe

)(
100
15

)
for all non-negative xn, xe, xn + xe 6 15.

In the general case, suppose we have a (relatively) small population of N items, which are
classified into k types (there Mi items of i-th type), and Xi is the number of items of i-th type
in a sample of size n. The joint distribution function is the so-called extended hypergeometric
distribution (note that there are only k − 1 variables here):

f(x1, . . . , xk−1) =

(
M1
x1

)
· · ·

(
Mk

xk

)(
N
n

)
Example 26. Language change. Suppose that a certain linguistic type, A, can change, within

a certain time interval, t, into k other types, with probabilities p1, p2, . . . , pk (
∑k

i=1 pi < 1).
How many instances of each new type will be found in a set of n languages that have been
in the state A t years ago? If Xi (i = 1, . . . , k) is the number of instances of i-th new type,
xk+1 = n−

∑k
i=1 xi, the number of instances of the initial type, then

f(x1, . . . , xk) =
n!

x1! · · ·xk!xk+1!
px1
1 · · · pxk

k p
xk+1
k+1

where pk+1 = 1−
∑k

i=1 pi. This is the multinomial distribution (corresponding to the binomial
distribution for a single variable). It describes the case of sampling with replacement and
provides an approximation for extended hypergeometric distribution if the sample is much
smaller than the population.

If the pair of discrete random variables has the joint pdf f(x1, x2), then the marginal pdf’s of
X1 and X2 are

f1(x1) =
∑
x2

f(x1, x2)

f2(x2) =
∑
x1

f(x1, x2)

The marginal pdf for any single variable in a multinomial distribution is binomial.

3 Independent random variables

Random variables X1, . . . , X2 are independent if for every ai < bi,

P [a1 6 X1 6 b1 ∩ · · · ∩ ak 6 Xk 6 bk] =
k∏

i=1

P [ai 6 Xi 6 bi]

For discrete random variables, f(x1, . . . , xk) =
∏

i fi(xi).
For a pair of random variables X1, X2, the support set is the set of all pairs of values (x1, x2)

for which f(x1, x2) > 0. They can be independent only if the support set is a Cartesian product.
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Example 27. Dominant orders. Consider two random variables: variable X is the frequency of
transitive clauses with S before O, and variable Y is “S precedes O in the basic word order”.
Are these variables independent? Why?

4 Covariance and correlations

4.1 Covariance

The covariance of a pair of random variables X and Y :

Cov(X, Y ) = σXY = E[(X − µX)(Y − µY )]

Also:

Cov(X, Y ) = E(XY )− E(X)E(Y )

and Cov(X, Y ) = 0 if the variables are independent.

Var(X1 + X2) = Var(X1) + Var(X2) + 2Cov(X1, X2)

E(X1 + X2) = E(X1) + E(X2)

Example 28. OV and adpositions. (adapted from Dryer (1989)). The joint distribution of two
cross-linguistic Bernoulli variables, Post and OV , is represented in the following table:

Post = 1 Post = 0
OV = 1 0.53 0.03 0.56
OV = 0 0.06 0.38 0.44

0.59 0.41 1

E(OV ) = 0.56, E(Post) = 0.59, E(OV · Post) = 0.53

Cov(OV, Post) = E(OV · Post)− E(OV ) · E(Post) = 0.2

Example 29. Morphological complexity in nominal and clausal constructions. Nichol’s con-
siders her morphological complexity measure as a characteristic of the language as a whole, yet
the actual complexity points come from two classes of constructions, nominal and clausal. It
would be interesting to figure out whether or not the two random variables, the morphological
complexity of NP (CNP ) and the morphological complexity of clause (CCl) are independent.
Here is the summary of the data needed to answer this question:

E(CNP ) = 2.4, E(CCl) = 5.71, E(CNP · CCl) = 14.56
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4.2 Correlation coefficient

The correlation coefficient of X and Y is

ρ =
σXY

σXσY

The random variables X and Y are correlated if ρ 6= 0. If ρ is the correlation coefficient, −1 6 ρ 6 1,
and ρ = ±1 if and only if Y = aX + b with probability 1 for some a 6= 0 and b.

Example 30. Correlation between OV and Post. (continuation of Ex. 28). Recall that the
covariance of OV and Post is Cov(OV, Post) = 0.2. In order to calculate the correlation
coefficient, we need to know variances of the two variables:

Var(OV ) = 0.56 · (1− 0.56) = 0.25,Var(Post) = 0.59 · (1− 0.59) = 0.24

The correlation coefficient is:

ρ =
Cov(OV, Post)

σOV σPost
= 0.83

Example 31. Correlation of morphological complexity in nominal and clausal constructions.
(continuation of Ex. 29) Calculate the correlation coefficient for CNP , CCl, if

Var(CNP ) = 1.1,Var(CCl) = 6.4

5 Conditional distributions; conditional expectation and vari-
ance

If X1, X2 are random variables with joint pdf f(x1, x2), then the conditional pdf of X2 given X1 = x1

is

f(x2|x1) =
f(x1, x2)
f1(x1)

for x1 : f1(x1) > 0 and zero otherwise.
The notions of expectation and variance can be extended to the conditional framework:

E(Y |x) =
∑

y

yf(x|x)

Var(Y |x) = E{[Y − E(Y |x)]2|x} = E(Y 2|x)− [E(Y |x)]2

Example 32. Conditional expectation and variance of complexity in clausal constructions.
In Exs. 29 and 31 we found that the morphological complexity in NP and in clausal construc-
tions co-vary. Recall that E(CCl) = 5.71 and Var(CCl) = 6.41. The following table gives the
conditional expected values for several values of CNP :

23



i E(CCl|CNP = i) Var(CCl|CNP = i)
0 4.44 5.8
1 4.53 6.14
2 5.36 6.75
3 6.05 4.19
4 7 5.6

Exercises

Example 33. Head-marking and dependent-marking. Recall that morphological complex-
ity points come from two major types of “locations” in various constructions, “head” and “de-
pendent”. The idea behind the classification of languages into “head-marking” and “dependent-
marking” is that there is a strong general tendency to put markers either on the head or on
the dependent constituent.

E(CD) = 4.3, E(CH) = 3.61, E(CD · CH) = 13.12

What is the covariance of these variables?

Example 34. Head-marking and dependent-marking. (continuation of Ex. 33) Calculate
the correlation coefficient for CD, CH , if

Var(CD) = 8.99,Var(CCl) = 4.43
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Part VI

An interim summary

1 Applicability of the logical structure of probability

1.1 Quantitative typology as a descriptive device

Example 35. Population and sample space. A common approach to typological sampling is
to use genetic groupings as individuals; the experiment consists in selecting a single language
from each genetic grouping at random and establishing its type. Suppose a study identifies
a complete set of genetic groupings, G1, . . . , Gk, and defines a variable, V , with two possible
values, 0 and 1. The sizes of genetic groups are N1, . . . , Nk, and the actual number of repre-
sentatives of “V = 1” in these groups are M1, . . . ,Mk. What is the probability of having x
representatives of “V = 1” in the sample? What are the expectation and variance of X?

f(x) =
∑

A∈Sx

∏
i∈A

Mi

Ni

∏
j /∈A

1−Mj

Nj

where Sx is the set of all sets of x distinct indices.

E(X) =
k∑

i=1

Mi

Ni

Var(X) =
k∑

i=1

Mi(1−Mi)
N2

i

Do we expect that different samples of this type will exhibit similar frequencies of type “V =
1”? What if study not the complete set of genetic groupings, but select r genetic groupings
at random?

What is the sample space in this experiment? How can it be re-defined?

1.2 Correlations and implications

Michael Cysouw suggested that the class of typological phenomena referred to as implicational
universals cannot be established by analysis of statistical data, i.e. it cannot be given a probabilistic
sense. Is this really the case?
Definition. One value of binary variable A is marked with respect to another binary variable, B,
if Var(B|A = 1) 6= Var(B|A = 0). Then, the marked value of A if the one for which the conditional
variance of B is less.
Definition. A dependency between A and B can be said to be symmetric with respect to A if
neither value of A is marked with respect to B.

Aside from the case of independence (PB(1|A = 1) = PB(1|A = 0)), a symmetric dependency
means that (PB(1|A = 1) = 1−PB(1|A = 0). Assuming that the notion of “positive” value can be
given the same linguistic sense for both parameters (for example, “head-final” for OV and GenN),
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this means that the probability that both parameters have the same value does not depend on the
value of A. That is, if we introduce a third variable, D, such that D = 1 if A = B and 0 otherwise,
then PD(1|A = 1) = PD(1), i.e. D and A are independent.

Now a specific hypothesis of implicational universal can be formulated as follows:
A joint distribution of A and B counts as an implicational universal A → B if the following

conditions are simultaneously met:

Var(B|A = 1) < Var(B|A = 0) & PB(1|A = 1) > PB(1) & Var(A|B = 1) > Var(A|B = 0)

There is an important distinction between the concept of absolute implicational universal and
its extension to the case of statistical universals. An absolute implicational universal A → B
is always equivalent to B → A. For a stochastic implicational universal, this is not the case.
More specifically, there are two statistically distinguishable types of dependencies that count as
implicational universals A → B according to our definition: strong unidirectional implication:
A → B and B → A, and weak unidirectional implication: A → B, but neither value of B is marked
with respect to A.

Exercise: Here are two examples of “implicational” joint distributions; which is weak and which
is strong?

A = 1 A = 0
B = 1 0.26 0.32
B = 0 0.04 0.38

A = 1 A = 0
B = 1 0.57 0.19
B = 0 0.06 0.18

2 Extending the population to infinity

Example 36. ‘Language (in)dependence’. (continuation of Ex. 18) Consider two languages
L1, L2 that are genetically related at time depth t, i.e. t years ago their common ancestor, L,
split into two language communities, L∗1 and L∗2, and Li is a descendant of L∗i . The evolutions
from L∗1 to L1 and from L∗2 to L2 can be considered as ‘trials’. Are these trials independent?
Is the following true (if Ai is the event “Li represents type A”)?

P (A1 ∩A2) = P (A1) ∩ P (A2)

Example 37. “A language birth”. Suppose at some point in history there are N languages.
Suppose there is a typology that classifies them into k types, so that i-th type is represented
by ni languages (

∑k
i=1 ni = N). The likelihood of a language community splitting into

two communities does not depend on the type to which the language belongs. Whichever
community splits first, this adds a new language to the population, and this new language
belongs to the same type as the ancestor language. After this, N ′ = N + 1, and n′i = ni + 1
for some i = x. What is the probability of the first new language added to the population
being of type x? Does this pose a problem for construing of history as a procedure of random
sampling?
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Example 38. Areas as distinct populations. Recall that Matthew Dryer (1989) proposed to
divide the world into five large (continental) areas, and to study the distributions of cross-
linguistic variables for each area separately. His idea can be now reformulated as follows:
if the non-linguistic processes in language populations work as a random sampling from the
space of available possibilities (of sorts), then the cross-linguistic distributions must be similar
for different populations (which can then be viewed as “samples” from the same infinite
population). Dividing the world into large areas gives us five relatively large “samples” (he
also samples “genera”, rather than languages, but we will disregard this for now).

His raw data on representation of basic word orders is summarized in the following table.

Africa Eurasia Australia North America South America Total
SOV 22 26 19 26 18 111
SVO 21 19 6 6 5 57
Other 5 7 5 28 8 53
Total 48 52 30 60 31 221

Dryer’s original idea was to distinguish two area-based ‘events’ for each pair of types (‘more
frequent’ and ‘less frequent’), which has some obvious disadvantages in terms of statistical
testing (We will discuss it in more details later). On the other hand, it can hardly be the case
that the non-linguistic processes work as ‘random sampling’ for some parameters but not for
others. So, the fact that Dryer’s test gives negative results for many parameters can as well
be viewed as the negative answer to the question of whether these processes constitute an
appropriate ‘random sampling’. Does it mean that the linguistically significant probabilistic
interpretations are doomed?
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Part VII

Introduction to random processes

1 Markov processes

A Markov process is specified by a set of states, S = {s1, s2, ..., sr}; each move (called a step)
consists of moving from one state to another (or remaining in the same state). The probability of
moving from state si to state sj is denoted by pij and does not depend on the previous history of
moves. These probabilities are called transition probabilities. The probability of remaining in state
si is denoted by pii.

Example 39. An example of Markov chain. Consider a three-way word-order typology: there
are the verb-initial type-state (Vi), the verb-final type-state (Vf ), and all other languages (Vm);
imagine that for a 1000-years “step”, the probabilities of finding the language in a certain
state depending on its state at the previous step are as follows:

P =
Vi

Vm

Vf

1/4 1/2 1/4
1/8 3/4 1/8
0 1/2 1/2



1.1 Transition matrices. Probabilities for n steps

(22) p
(2)
jk =

r∑
i=1

pjipik

(23) p
(n)
jk =

r∑
i=1

p
(n−1)
ji pik

(24) Pn = Pn−1P

(25) p
(n)
jk =

r∑
i=1

p
(m)
ji p

(n−m)
ik

(26) Pn = PmPn−m

Distribution after n steps

(27) u(n) = uPn
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Example 40. The Ehrenfest two-urn model. (Ehrenfest Model) The Ehrenfest model has been
used to explain diffusion of gases, yet it can also be construed as a model of totally random
type-shifts. We have two urns and n balls (for the simplest example, let us take n = 4). At
each step, one of the four balls is chosen at random and moved from the urn that it is in into
the other urn. The states are the number of balls in the first urn. The transition matrix is
then:

P =

0
1
2
3
4


0 1 0 0 0

1/4 0 3/4 0 0
0 1/2 0 1/2 0
0 0 3/4 0 1/4
0 0 0 1 0



2 Absorbing Markov chains

A state si of a Markov chain is called absorbing if it is impossible to leave it (i.e., pii = 1). A
Markov chain is absorbing if it has at least one absorbing state, and if from every state it is possible
to go to an absorbing state (not necessarily in one step). In an absorbing Markov chain, a state
which is not absorbing is called transient.

Example 41. Nominal conjunction as absorbing state. At the present time, languages can
be classified into two types, those that have a nominal conjunction construction and those
that do not (a comitative (WITH-like) construction is used instead). A possible hypothesis is
that the state with nominal conjunction is absorbing, i.e. once a language acquires a nominal
conjunction construction, it never loses this construction type. The transition matrix thus
looks as follows:

+Conj -Conj
+Conj 1 0
-Conj α 1− α

Example 42. Rise and fall of language families. Consider the following simple model of the
rise and fall of language families. We consider the number n of languages in a family (n =
1, ...,M) as the states of the process. There is a certain probability λ(n) of a single new
language appearing by virtue of language split (where n is the current number of languages,
λ(M) = 0). There is another probability µ(n), of a single language disappearing. Obviously, if
the last language disappears, there can be no more splits, so λ(0) = 0. n = 0 is the absorbing
state.

In an absorbing Markov chain, the probability of absorption is 1.

3 Ergodic Markov chains

3.1 Introductory

A Markov chain is called ergodic (or irreducible) if it is possible to reach every state from every
other state (not necessarily in one step).
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Example 43. A reducible chain of reciprocity. Languages can be classified into five major
types depending on how they express reciprocity: N — languages without conventionalized
reciprocal constructions, B – languages with reciprocal constructions where reciprocal par-
ticipants must be referred to in two distinct syntactic slots, R – languages where reciprocity
is conventionally expressed by the reflexive construction, I – languages with a non-reflexive
reciprocal construction, and M , languages with both reflexive and non-reflexive constructions.
There are reasons to assume that there are no diachronic path from any of the last three states
to either of the first two; that is, once a language evolves a reciprocal construction that does
allow for all reciprocal participants to be referred to in a single slot, it will always have such a
construction (possibly another one). The corresponding transition matrix can look like this:

P =

N
B
R
I
M


0.7 0.1 0.1 0.1 0
0 0.7 0.1 0.1 0.1
0 0 0.7 0 0.3
0 0 0 0.7 0.3
0 0 0.1 0.2 0.7


This chain is neither ergodic (it is impossible, e.g., to get from R to B), nor absorbing (there
are no states from which there is no way out). As far as its behaviour is concerned, it can be
represented as a combination of two chains, one absorbing and one ergodic.

First, let us define a new type-state U = {R, I, M}, which includes all states that can be
reached from every other state. In the new transition matrix, this state is absorbing:

PA =
N
B

U = {R, I, M}

0.7 0.1 0.2
0 0.7 0.3
0 0 1


In other words, after some time the process will be absorbed by the generalized state, U . The
original changed is thereby reduced to an ergodic chain:

PE =
R
I
M

0.7 0 0.3
0 0.7 0.3

0.1 0.2 0.7



3.2 A first look at the long-term behaviour

The fundamental property of ergodic chains is that if we consider a sequence of transition matrixes
for n steps of the process, with increasing n, i.e. P,P1,P2,P3, etc., the rows of the matrix gradually
become more and more similar to one another and, ultimately, identical. Consider, for example,
the powers of the ergodic “reciprocal” matrix from our example:

P =

0.7 0 0.3
0 0.7 0.3

0.1 0.2 0.7


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P2 =

0.52 0.06 0.42
0.03 0.55 0.42
0.14 0.28 0.58


P2 =

0.41 0.13 0.47
0.06 0.47 0.47
0.16 0.31 0.53


P3 =

0.33 0.18 0.49
0.09 0.42 0.49
0.16 0.32 0.51


P4 =

0.28 0.22 0.49
0.11 0.39 0.49
0.16 0.33 0.51


P2 =

0.25 0.26 0.5
0.13 0.37 0.5
0.17 0.33 0.5


P5 =

0.22 0.28 0.5
0.14 0.36 0.5
0.17 0.33 0.5


P6 =

0.21 0.3 0.5
0.15 0.35 0.5
0.17 0.33 0.5


P7 =

0.19 0.31 0.5
0.15 0.35 0.5
0.17 0.33 0.5


P8 =

0.19 0.31 0.5
0.16 0.34 0.5
0.17 0.33 0.5


P9 =

0.18 0.32 0.5
0.16 0.34 0.5
0.17 0.33 0.5


P10 =

0.18 0.32 0.5
0.16 0.34 0.5
0.17 0.33 0.5


P11 =

0.17 0.33 0.5
0.16 0.34 0.5
0.17 0.33 0.5


P12 =

0.17 0.33 0.5
0.16 0.34 0.5
0.17 0.33 0.5


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P13 =

0.17 0.33 0.5
0.17 0.33 0.5
0.17 0.33 0.5


3.3 The unique stationary solution

The fact that Pn tends to a limiting vector as n approaches ∞ guarantees that there is a unique
probability vector with the following property:

wP = w

We can find the limiting vector w for the verb-based word order typology of Example 39 from:

w1 + w2 + w3 = 1

and

(w1w2w3)

1/4 1/2 1/4
1/8 3/4 1/8
0 1/2 1/2

 = (w1w2w3)

These relations lead to the following four equations in three unknowns:

w1 + w2 + w3 = 1
1
4
w1 +

1
8
w2 = w1

1
2
w1 +

3
4
w2 +

1
2
w3 = w2

1
4
w1 +

1
8
w2 +

1
2
w3 = w3

If the equations are solved, we obtain the unique solution:

w = (
1
9

2
3

2
9
)

Exercises

1. Calculate the limiting probabilities for the ergodic reciprocal chain from Ex. 43.

2. Show that for any two-state process,

P =
(

1− α α
β 1− β

)
the limiting vector is:

w = (
β

α + β

α

α + β
)
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3.4 Time spent in a state

As n approaches infinity, the time (the number of steps) the process spends in each state becomes
proportional to the limiting probability of this state.

Let P be the transition matrix for an ergodic chain. Let An be the matrix defined by

An =
I + P + P2 + · · ·+ Pn

n + 1
.

Then An → W, where W is a matrix all of whose rows are equal to the unique fixed probability
vector w for P.

Assume that we have an ergodic chain that starts in state si. Let X(m) = 1 if the m-th step
is to state sj and 0 otherwise. Then the average number of times in state sj in the first n steps is
given by

H(n) =
X(0) + X(1) + X(2) + · · ·+ X(n)

n + 1

But X(m) takes on the value 1 with probability p
(m)
ij and 0 otherwise. Thus E(X(m)) = p

(m)
ij , and

the ij-th entry of An gives the expected value of H(n), that is, the expected proportion of times in
state sj in the first n steps if the chain starts in state si.

Example 44. Reconstructing transition matrices. Imagine there is a pair of binary param-
eters known to correlate in the language population, e.g. VO vs. OV and Postpositions vs.
Prepositions: the values of the first parameter are roughly equiprobable, almost (but not all)
VO languages are prepositional, and almost (but not all) OV languages are postpositional.
Construct a Markov process for this typology, in such a way that its limiting vector predicts
the observed properties of the distribution. Check whether you succeeded by calculating the
limiting vector for your transition matrix. What linguistic hypotheses are incorporated into
your transition matrix?
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Part VIII

Non-linguistic random processes in the
language population

1 Birth-and-death process

Assume there is a certain probability of community split (“language birth”), pb, and a certain
probability of population shift (“language death”), pd within a short time interval, ∆t.

Exercise questions.

1. If there are n languages at t0, what is the expected number of languages at t1 = t0 + ∆t?

2. What is the probability of the total number of languages increasing by k?

3. What is the probability that total number of languages decreasing by k?

In order to describe the long-term effects of birth-and-death, we’ll have to switch to processes
with continuous time (instead of discrete “steps”). For this, the transition probabilities are replace
by the probabilities of change for any time interval, from t to t+s, Pjk(s). Pjk(s) is the conditional
probability of the state Ek at time t+ s under the condition that the process was in the state Ej at
time t < t + s. It is assumed that this probability depends only on the length of the time interval,
but not on the specific value of t. Such a process is called time-homegenous. The continuous-time
counterpart of the equations describing probabilities for n steps is Kolmogorov-Chapman equation:

(28) Pjk(x + y) =
∑

i

Pji(x)Pik(y)

Example 45. Feller-Arley process. Switching to a process with continuous time can be though
of, very informally, decreasing ∆t. As the time interval approaches 0, the probability of
the population size changing by more than one tends to 0, too. This gives the Feller-Arley
model, a model of linear birth-and-death process, a continuous-time Markov process with the
following transition rates (Feller 1971:454-457, Srinivasan & Mehata 1978):

qn,n+1 = nλ for n > 0
qn,n−1 = nµ for n > 0
qn,m = 0 for n ≥ 0,m ≥ 0,m 6= n± 1,

where λ and µ are probability densities for birth and death respectively. Probabilities pn(t|1)
for a language to have n descendants by the end of time interval t are given by the following
expressions:

(29) pn(t|1) = (1− a)(1− b)bn−1 for n > 1,

(30) p0(t|1) = a,
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where a = (µe(λ−µ)t) − µ)/(λe(λ−µ)t) − µ), b = λa/µ.

Probabilities for a population with initial size N0 to have n members by the end of time
interval t are:

(31) pn(t|N0) = aN0bn

min(N0,n)∑
j=0

(
N0 + n− j − 1

n− j

)(
N0

j

)
(
1− a− b

ab
)j .

The mean value of population size N(t|N0) and the variance are given by the following equa-
tions:

(32) Exp[N(t|N0)] = N0e
(λ−µ)t,

(33) Var[N(t|N0)] = N0
λ + µ

λ− µ
e(λ−µ)t(e(λ−µ)t − 1).

The expected number of ancestor languages that will have at least one descendant is:

(34) K(t|N0) = N0(1− p0(t|1)).

Example 46. Birth-and-death process and V(t). Assume we are interested in one particular
aspect of V(t), the frequency of a certain type. At t0, it is represented by m languages, of the
total of n languages. How will the frequency change at t1 = t0 + ∆t?

2 A simple contact-based model

Assume there are n languages in a certain area, nX of them are of type X and nY are of type Y
(nX +nY = n). Assume, further, that there is a certain probability γ of a language being influenced
by another language (from the same area). If a language is influenced by a language of the same
type, the corresponding property does not change. If it is influenced by a language of the other
type, it changes with the probability α after a certain time interval (taken as a “step”).

What is the expected number of languages of type X after a single time step?
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Part IX

Language change as a random process.
Ergodic hypothesis

1 Types as states of a random process

Example 47. Life-times of types. Consider the following question: if a language is in a certain
typological state E (e.g. it has SOV as its basic word order or a nominative-accusative
transitive construction), what is the probability ps(t) that it will still be in the same state
after some time t? Let’s begin with considering this question in terms of discrete ‘time steps’,
i.e. we want to describe p(k+l)(E|S(k) = E) (the probability that the language is in the state
E at the k + m-th step given that it was in this state at k-th step. To put it in other terms,
we want to describe the probability that exactly x steps will pass before the first type-shift.
Let X, the number of steps before the first type-shift be our random variable.

From what we know about languages, this probability cannot depend on how long the language
has already spent in this state before the k-th step (the speakers have no access to this
information). Thus, the process has a so-called “no-memory” property:

P (X > j + k|X > k) = P (X > k)

The only discrete distribution that has this property is the geometric distribution, often
described in terms of the number of trials before the first success (for a given probability of
success, p). For an event [X = x] to occur, it is necessary to have exactly x − 1 successful
transmissions (from step i to step i + 1) followed by a single success. Thus,

g(x; p) = p(1− p)(x−1)

(for our example, p is the probability of change).

If we switch to continuous time model, the no-memory property is reformulated as follows:

P (X > a + t|X > a) = P (X > t)

This property is satisfied if and only if X has the exponential distribution:

f(x;λ) = λe−λx x > 0

where λ is the rate of change (the expectation of the life time is 1/λ and variance 1/λ2).

Example 48. The number of changes within a time interval. Let X(t) denote the number
of language changes within a given time interval [0, t]. It seems reasonable to assume that the
probability that a change will occur within a given short time interval [t,∆t] is approximately
proportional to ∆t, and that the occurrences of events in non-overlapping time intervals are
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independent; if the probability of two events occurring within the same ∆t is negligible if
∆t → 0, than X(t) follows the Poisson distribution:

Pn(t) = P [X(t) = n] =
e−λt(λt)n

n!
,

with E(n) = λt and Var(n) = λt.

The same model can be applied to various kind of “external hits” affecting a language or its
subsystem (including language contact).

2 Randomness in language change: propagation

Example 49. Propagation via communication. Imagine a community including of n1 speak-
ers with one variant of a sociolinguistic variable (v1) and n2 speakers with the other variant
(v2).

Assuming that each speaker is equally likely to communicate with any other speaker, what is
the probability that an act of communication involves speakers from different groups, given
that it does take place?

What is the probability of a v1-speaker communicating with a v2-speaker?

It may be assumed that the probability that a speaker will switch to the other variant is a
function of the number of times it encounters this other variant (along with other parameters).
How will this probability depend on the values of n1 and n2?

3 Randomness at the level of mental grammars

Reanalisis changes the underlying structure of a pattern, but does not involve immediate visible
modifications. For a reanalysis to take place, a subset of the tokens of a particular constructional
type must be open to the possibility of multiple analyses. One of them is old, hence applicable to all
tokens, the other is new and applicable to a subset of tokens. A fundamental feature of reanalysis
is that it is distinct from and must happen before actualization, i.e. before any visible consequences
of the novel analysis occur.

Example 50. Reanalysis: first stage. The deterministic approach would be to assume that,
given a fully specified linguistic environment, including the basis for reanalysis (i.e. the pattern
open to multiple analyses) and all other relevant aspects of grammar, the novel analysis either
necessarily arises or does not arise at all. This would be simply pushing randomness to the
previous process of language change (which creates one or another environment), let alone
the problem of certain randomness within the environment (different speakers have slightly
different inputs). The probabilistic approach would be to assume that there is a certain
probability of the novel analysis being created within a mental grammar, which is quite
likely a function of certain parameters of the linguistic environment, including, for example,
the relative frequency of the tokens open for multiple analysis among all occurrences of the
construction type. An interesting property of this stage is that all that happens happens
within each mental grammar: the rise of a novel analysis in a mental grammar is invisible
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to other speakers and thus cannot influence other mental grammars. In other words, the
events of a novel analyses being created in different mental grammars are independent of one
another; there is a single probability of a novel analysis, say α(θ), where θ stands for the
relevant parameters of the environment. What is, then, the distribution of the number of
speakers having the novel analysis?

Example 51. Reanalysis: actualization. If the novel analysis is present in the mental gram-
mar, it can be actualized in a certain novel visible properties. Assume that, in a linguistic
environment characterized by certain values parameters θ1, a passive construction is analyzed
as ergative with the probability α1 = α(θ1). One implication of this behavior might be, e.g.,
dropping the novel subject (A) in the context of clausal conjunction (when it is co-referent
with the A/S of the first clause), which would be impossible under the passive analysis. Let
us assume that the conditional probability of doing this, for a speaker with double analysis,
in the appropriate context is β.
Obviously, the occurrences of such constructions must increase the likelihood of novel analysis,
and the higher the relative frequency d of tokens compatible with the novel analysis only,
the higher must be the probability of the ergative analysis. Let us assume a very simple
dependency:

α = α1 if d < α1

α = d if α1 < d <
1
2

α = 1 if d >
1
2

How the process of reanalysis will develop for different values of α1 and β?

Example 52. Complexity measures and performance preferences. Hawkins develops var-
ious measures of syntactic complexity, which are supposed to account both for language-
internal performance preferences and for some aspects cross-linguistic variation. For exam-
ple, a certain construction can be compatible with a range of different syntactic slots, yet the
resulting patterns will be characterized by different values of complexity; an example of this
is the hierarchy of accessibility to relativization, where the complexity of pattern appears to
increase as we move from the higher points in the hierarchy to the lower points:
S > DO > IO > Gen
In performance, the speakers would avoid complex constructions, and so the frequency of oc-
currence, within a single language, will decrease as the complexity grows. That is, in contexts
which allow for several coding options, the likelihood for a speaker to avoid a construction
will increase with its complexity.

f(RelS) = ρ > f(RelO) =
1
2
ρ > f(RelIO) =

1
3
ρ > f(RelGen) =

1
4
ρ

On the other hand, there are reasons to believe that the probability of a construction surviving
in a language depends on its frequency. A simple model would assume that if the frequency
f of a construction falls below a certain threshold, its transmission to the next generation of
speakers is not certain, but occurs with a certain probability α(f) < 1.
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Part X

Random processes and cross-linguistic
distributions

1 Regular differences between types of populations

1.1 Targeting different genetic depths

Example 53. Basic word order: “languages” vs. “genera”. Tomlin and Dryer study essen-
tially the same cross-linguistic variable (“basic word order”), yet in different populations:
Dryer (with some qualifications) chooses a single language per genus (ca. 3500-4000 years of
time depth), and Tomlin uses a much shallower type of genetic grouping (ca. 1000 years).
The major differences between the results are summarized in the following table:

Absolute frequencies Relative frequencies
Tomlin (m-languages) Dryer (genera) Tomlin (m-languages) Dryer (genera)

SOV 180 111 0.45 0.5
SVO 168 57 0.42 0.26
Other 54 53 0.13 0.24
Total 402 221 1 1

In Tomlin’s population SOV and SVO are nearly equiprobable (all other types together being
much less frequent), whereas in Dryer’s population, SVO is almost twice less frequent than
SOV, and other types together are almost as frequent as SVO. Wherefore the difference?

1.2 Limiting cases: maximum mobility vs. minimal mobility

Let us begin by considering two limiting cases in terms of the overall rate of change along the
parameter. In the framework we have discussed, these limiting cases can be defined in terms of the
number of steps needed to achieve stabilization of the distribution (the fixed vector of the transition
matrix). These limiting cases need not be realistic.

The minimum number of steps required to achieve stabilization is 1: this situation would obtain
if all rows in the transition matrix (for a relatively small time interval) were equal. For example, the
state the language is in because independent of its previous state after a single 100-year step. Then,
the birth-and-death process can have no effect whatsoever, and the difference between populations
is inexplicable within our framework (they should be identical as far as cross-linguistic distribution
of a mobile parameter is concerned).

The maximum stability is achieved if all states are absorbing, i.e. there can no change at all,
and the dependency on the initial state lasts forever. Then, the difference between the populations
must be due to the birth-and-death process alone. Is that likely? We can use the properties of the
birth-and-death process with continuous time, as discussed before, to answer that question.

The frequency f(t|N0, f0) of a linguistic trait with initial frequency f0 at time t can be repre-
sented as a function of two independent variables, corresponding to the size of two populations (for
two types).
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(35) f(t|N0, f0) =
N(t|N+

0 )
N(t|N+

0 ) + N(t|N−
0 )

,

where N+
0 = N0f0, N

−
0 = N0(1−f0), under the condition that at least one language survives by the

end of time interval t. We have already described the distribution of the population-size variables.
The expectation of frequency f(t|N0, f0) equals f0, and its variance can be estimated as:

(36) Var[f(t|N0, f0)] ∼=
λ + µ

λ− µ

f0(1− f0)
N0

e(λ−µ)t − 1
e(λ−µ)t

Using

(37) K(t|N0) = N0(1− p0(t|1)).

where p0 = (µe(λ−µ)t) − µ)/(λe(λ−µ)t) − µ), we obtain a simplified estimate:

(38) Var[f(t|N0, f0)] =
f0(1− f0)(λ + µ)

Kλ

Note that the variance increases as µ approaches λ and decreases as the size of initial population
grows. In reality, the estimates of these values (which we do not know) are closely related to one
another, so we can, for the sake of simplicity, switch to the birth-only process. This gives us the
following rule of thumb:

With a probability more than 0.95, the deviation of frequency f(t) in a descendant population

from its value in the ancestor population is less than
√

f0(1−f0)
K , where K is the number of genetic

groupings of the time depth t.

For our word order example, this means that the difference in the frequency of SOV in two
populations can be “accidental”, whereas the difference in the frequency of SVO is extremely
unlikely to have been brought about by the birth-and-death process alone.

1.3 Analysis of expectations: apparent time

Example 54. Case alignment in lexical NPs. The figures before the arrows are mean values
of relative frequencies of alignment types for several samples of mutually isolated languages
(sampling at the deepest depth of genetic affiliation, so called “stocks”. The figures after the
arrows are relative frequencies of the same types in a random sample from the population.
The boldface highlights the most striking differences.

Nominative Split Ergative
Consistent 0.17 → 0.22 0.02 → 0.05 0.16 → 0.09
Differential 0.10 → 0.13 0.02 → 0.01 0.02 → 0.02
Neutral 0.5 → 0.48
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The effect we have discussed for word order is observed here for the nominative-ergative
dimension. Again, if, say, the ergative alignment type is less stable than the nominative
alignment, i.e. if there are systematic differences in transition probabilities, then there will
be more languages that will have changed their alignment type among the descendants of
ergative ancestors than among the descendants of nominative ancestors. As a result of this
difference, the frequency of ergative languages in the modern language population will have
decreased (which is what we actually observe), whereas the sample of isolated languages is
more likely to represent an earlier distribution.

Note that, in this example, we also observe a variable for which there is no difference between
two populations, the variable associated with the neutral alignment. The most likely expla-
nation within our framework is that the actual distribution has already stabilized, i.e. it is
close to the fixed limiting vector of the (yet unknown) transition matrix.

1.4 Actual values of expectations of family-level values

Example 55. Family-internal frequencies of uncharacteristic alignment values. Table 3
represents our estimates of the family-internal frequencies of uncharacteristic values for three
“weak” binary variables, [+Nom], [+Erg], and [+Neu]. Here A stands for the positive value
of a ‘weak’ binary variable, the presence of some nominative, ergative, and neutral features;
B = A′.
A = Nominative Ergative Neutral
Frequency of B-languages in A-families 0.14 0.18 0.17
Frequency of A-languages in B-families 0.17 0.03 0.25

Do these figures corroborate our “apparent time” hypothesis for alignment?

2 Divergence rates

Example 56. The probability of divergence. Imagine there is a binary typological variable
with the following transition matrix:

P =
(

1− p01 p01

p10 1− p10

)
Imagine two languages that are in the same state at the k-th step. What is the probability
P (D) of them being in different state at the k + 1-th step?

(39) P k+1(D) = 2p(k)(E0)(1− p01)p01 + 2p(k)(E1)(1− p10)p10

Example 57. Divergence rate and pk+1. Continuing Example 56, p(k+1)(E1) is given by

(40) p(k+1)(E1) = p(k)(E1)(1− p10) + p(k)(E0)p01 = p(k)(E1)(1− p10) + (1− p(k)(E1))p01

Accordingly,
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(41) p(k)(E1) =
p(k+1)(E1)− p01

1− p10 − p01

Combining (39) and (41), we get the following linear dependency between p(E1) and P (D)
at the same step of the process:

(42) P (D) = ap(E1) + b, where a = 2(p10 − p01), b = 2p01(1− p10)

Example 58. Divergence of Alignment. Suppose we have the following estimates for P (E1)
and P (D) for different alignment variables and different sub-populations. How can we obtain
estimates for transition probabilities?

E1 = Neutral E1 = Nominative E1 = Ergative
P (E1) P (D) P (E1) P (D) P (E1) P (D)

I. 0.85 0.20 0.45 0.26 0.62 0.56
II. 0.11 0.20 0.05 0.13 0.2 0.05

3 Conclusion: empirical evidence for stochastic regularities
of language change

We have looked at various kinds of statistical cross-linguistic data in order to figure out how it can
be interpreted if language change is viewed as a genuine random process. Do these data provide
empirical evidence for this kind of modeling? They do, insofar as the inferences agree with each
other: e.g. the large-scale drift (for a rather long time interval) and the divergence rates (for a
shallow time depth) indicate the same type of systematic differences in transition probabilities.

Most important is the similarity between the limiting distribution predicted on the basis of
transition probabilities (obtained by measuring the divergence rate) and the actual synchronic
distribution. We will consider the degree of their similarity in detail later; for now, focus on the
most obvious: the variable associated with the neutral encoding, which has obviously stabilized at
the limiting distribution determined by the identity of transition probabilities (presumably because
the overall rate of change along this dimension is greater). Since the last period in the history of
language population could not have been long enough to stabilize the distribution, it means that
the transition probabilities have remained constant over a much longer period of time.
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Part XI

Limiting distributions, convergence, laws
of large numbers
A function of observable random variables, which does not depend on any unknown parameters,
is called a statistic. The statistic is also a random variable, the distribution of which depends
depends on the form of the function and on the distribution of the original random variables.
The distribution of a statistic is often called derived, or sampling, distribution (in contrast to the
population distribution).

1 Limiting distributions and stochastic convergence

Example 59. Accidental absolute universals. Let {T1, . . . , Tn} be a (potentially infinite) set
of definable linguistic properties (“types”), and pi = P (Ti), their probabilities (e.g. propor-
tions in a certain population). One way in which pi might be “random” (and linguistically ir-
relevant) can be described in terms of the (continuous) uniform distribution: pi ∼ UNIF(0, 1).

Fi(p) = F (p) = p.

The proportions pi, . . . , pn for a sequence of randomly selected linguistic properties can then
be viewed as a random sample from this uniform distribution. Although this does involve
obvious oversimplifications, this can be considered a model of certain aspects of typological
research over the decades.

Now let Un be the largest observed value for the given sequence sequence of p1, . . . , pn (this
is called the largest order statistic). The cumulative distribution function of Un is then:

Gn(p) = pn 0 < p < 1,

zero if p 6 0 and one if p > 1. As n approaches ∞, Gn(p) approaches 0 for p < 1 and 1 for
p > 1:

(43) G(p) =

{
0 p < 1
1 p > 1

.

A function like that defined by 43, where the distribution of a random variable is concentrated
at one value (c = 1), is the CDF of a degenerate distribution. If Yn ∼ Gn(y) and if for some G(y)

lim
n→∞

Gn(y) = G(y)

the sequence Y1, . . . , Yn converges in distribution to Y ∼ G(y). The distribution corresponding
to G(y) is called the limiting distribution of Yn. If the limiting distribution is degenerate at y = c,
the sequence converges stochastically to c.

43



Example 60. Rara and rarissima. Let X1, ..., Xn be a random sample from a Bernoulli distri-
bution, Xi ∼ BIN(1, p), and consider Yn =

∑n
i=1 Xi. If we let p → 0 as n → ∞ in such a

way that np = µ for a fixed µ > 0, then Yn converges in distribution to Y ∼ POI(µ), i.e.
f(y) = e−µµy

y! (with the mean and the variance equal to µ).

2 The central limit theorem and normal approximations

2.1 (Recalling) normal distribution

The normal distribution N(µ, σ2) with mean µ and variance σ2 has the probability density function:

(44) f(x;µ, σ2) =
1√
2πσ

e−[(x−µ)/σ]2/2

The standard normal distribution (N(0, 1)) results from the following transformation of a normal
distribution:

(45) z =
x− µ

σ

(46) φ(z) =
1√
2π

e−z2/2

The sum of independent normally distributed variables is normally distributed with µ =
∑

i µi, σ2 =∑
i σ2

i . The special case of a random sample from a normally distributed population (N(nµ, nσ2));
the sample mean is then normally distributed with mean µ and variance σ2/n.

2.2 The central limit theorem

Central limit theorem. If X1, ...Xn is a random sample from a distribution with mean µ and
variance σ2 < ∞, then the limiting distribution of

Zn =
∑n

i=1 Xi − nµ√
nσ

is the standard normal distribution, Z ∼ N(0, 1) as n approaches ∞.

Example 61. Birth-and-death effects and the population size. The size S of a genetic group-
ing of a fixed time-depth t appears to follow the Pareto (power-law) distribution.

(47) f(s; θ, k) =
k

θ
(1 +

x

θ
)−k+1

This distribution is as far from normal as can be. However, if we are interested in the influence
of the birth-and-death process on the proportions of language types of the populations, we
are interested not in the size of a single grouping, but rather in the sum Xn = S1 + · · ·+ Sn

of sizes of all n groupings whose ancestors belonged to a certain type.
The CLT tells us that as n grows, the distribution of Xn becomes closer and closer to normal,
and its variance decreases proportionally to n. This is the fundamental reason why the birth-
and-death effects do not produce strong effects in large populations.
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Example 62. Genetically-isolated samples. In Example 35, we considered the number of rep-
resentatives of a certain type (X) in a sample of containing a single language from each genetic
grouping from a certain pre-established set. In particular,

E(X) =
k∑

i=1

Mi

Ni

Now, Yi = Mi

Ni
themselves are independent random variables drawn from an unknown dis-

tribution f(y) determined by the interaction of random process in the language population.
What is the distribution of Z = E(X) and how its parameters depend on the properties of
f(y)?

Example 63. Sample proportions. Does the CLT apply to sample proportions? Why and how?

2.3 Approximations for binomial distribution

For large n and fixed p, BIN(n, p) is approximately Yn = N(np, npq). This approximation works
best when p is close to 0.5 (one guideline is to use the normal approximation when np > 5 and
nq > 5.

Example 64. SOV. Assume that the probability that a modern language is in the SOV-state is
0.5. If we randomly select 20 languages, what is the probability that at least nine of them are
SOV? The exact probability is

P [Y20 > 9] = 1− P [Y20 6 8] = 1−
8∑

y=0

(
20
y

)
0.5y0.520−y = 0.7483

A normal approximation is

P [Y20 > 9] = 1− P [Y20 6 8] = 1− Φ(
8− 10√

5
) = 1− Φ(−0.89) = 0.8113

Continuity correction. Each binomial probability, b(y;n, p), has the same value as the area of
a rectangle of height b(y;n, p) and the interval [y−0.5, y+0.5] as its width. The area of this rectangle
can be approximated by the area under the probability density function of Y ∼ N(np, np(1 − p))
(with the same interval as its base):

P [a 6 Yn 6 b] = Φ(
b + 0.5− np

√
npq

)− Φ(
a− 0.5− np

√
npq

)

For example,

x = b(7; 20, 0.5) = 0.0739

x ≈ Φ(
7.5− 10√

5
)− Φ(

6.5− 10√
5

) = Φ(−1.12)− Φ(−1.57) = 0.0732
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If the same idea is applied to our original problem, we get an approximation which is much closer
to the exact value:

P [Y20 > 9] = 1− P [Y20 6 8] = 1− Φ(
8.5− 10√

5
)1− Φ(−0.67) = 0.7486

3 Laws of Large Numbers

The Law of Large Numbers.If X1, ..., Xn is a random sample from the distribution with finite
mean µ and variance σ2, then the sequence of sample means converges to µ.
Bernoulli Law of Large Numbers. The sequence of sample proportions converges stochastically
to p as n approaches infinity (there is a fixed p and we consider the random variable Wn, the
proportion of successes in a sample of size n (Wn = Yn

n ).

Example 65. Language change and population size. Imagine a language in such state S that
the probability of a certain change (‘mutation’) in an individual mental grammar is α. The
mutation ‘takes off’ as a language change if the proportion x of speakers having this mutation
(in the community) is higher than a certain threshold γ = 0.9α. How the probability p that
this threshold will be reached for a given generation of speakers changes with the growth of
the community?
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Part XII

Applicability of statistics and tests of
hypotheses

1 Tests of hypotheses: the general idea

A statistical hypothesis is a statement about a distribution. If the hypothesis completely specifies
the distribution, it is called a simple hypothesis; otherwise it is called composite.

Example 66. Preference. Suppose we have developed a theory of word-order distributions in
any geographically defined language population that predicts that the proportion of SOV
languages in a language population is distributed normally with µ = 0.5 and σ2 = 1/K,
where K is the number of genetic stocks represented in the population. We want to test this
hypothesis (H0) against the alternative hypothesis Ha : µ > 0.5.

The critical region for a test of hypotheses is the subset of the sample space that corresponds to
rejecting the null hypothesis. In our example, the critical region can be expressed in terms of the
sample proportion of SOV languages, p̂; i.e. it will include all samples for which p̂ satisfies certain
conditions. Since the alternative hypothesis is µ < 0.5, a natural form of the critical region is

C = {(x1, ..., xk)|p̂ < c}

for some appropriate constant c.
Type I error: Reject a true H0. P [TI] = α Type II error: Fail to reject a false H0 (“accepting

a false H0”) P [TII] = β
A test statistic and a critical region are selected in such a way that we would have a small

probability of making these two errors. For a simple null hypothesis, the probability of type I error
is referred to as the significance level of the test.

The standard approach would be to specify or select some acceptable level of type I error, and
then to determine a critical region that would achieve this α (among all possible regions, we would
select the one that has the smallest P (TII).

For this illustration, we will use Dryer’s genera-based data, disregarding the problems created
by genera-based sampling and assuming that there 25 stocks in each large area, i.e. σ2 = 1/25 and
σ = 1/5 = 0.2.

Africa Eurasia Australia North America South America Total
SOV 22 26 19 26 18 111
SVO 21 19 6 6 5 57
Other 5 7 5 28 8 53
Total 48 52 30 60 31 221

For α = 0.05:

c = µ0 + z1−α
σ√
n

= 0.5− 1.645 · 0.2√
n
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The following table gives the actual values of p̂ and c for all areas; the North-American sample
rejects the hypothesis, while all other areal samples fail to do so.

Africa Eurasia Australia North America South America
p̂ 0.46 0.5 0.63 0.43 0.58
c 0.45 0.45 0.44 0.46 0.44
Rejected: No No No Yes No

2 Contingency tables and goodness-of-fit

2.1 χ2-distribution

The most common way of solving this sort of problems invokes the χ2-distribution, a special case
of Gamma distribution.1

Y ∼ χ2(v) = GAM(2, v/2); f(x; v) =
1

2v/2Γ(v
2 )

x
v
2−1e−

x
2

The fundamental importance of this distribution lies in the fact that if Z ∼ N(0, 1), then Z2 ∼ χ2(1),
which means that it can be used to study deviations from the expected values. If X1, ..., Xn denotes
a random sample from N(µ, σ2), then

n∑
i=1

(Xi − µ)2

σ2
∼ χ2(n)

n(X̄ −mu)2

σ2
∼ χ2(1)

(n− 1)S2

σ2
∼ χ2(n− 1)

The square of an approximately normally distributed test statistic will be approximately dis-
tributed as χ2(1). The sum of independent chi-square variables is chi-square distributed.

A common test for independence is based on the question whether the probability of a certain
value is the same in r samples. Returning to the data of our first example, we can ask whether the
probability of SOV is the same in all areas. So our null hypothesis H0 is now that it is indeed the
same; if so, its best estimate is based on the pooled sample: p̂ = 111/221 = 0.5. From this, we can

1

Γ(k) =

Z ∞
0

tk−1e−tdt

Γ(k) = (k − 1)Γ(k − 1)

Γ(n) = (n− 1)!, n = 1, 2...

Γ(
1

2
) = π

1
2

X ∼ GAM(θ, k); f(x; θ, k) =
1

θkΓ(k)
xk−1e−x/θ
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calculate the expected numbers of SOV (ê1j) and non-SOV ê2j (j = 1, . . . , 5) languages, given the
size of each sample, and compare them with the actually observed numbers (oij) by forming the
following (standardized) random variables Xij ∼ χ2(1):

xij =
(oij − êij)2

êij

Africa Eurasia Australia North America South America Total
SOV 0.17 0 1.07 0.53 0.4 2.17
Other 0.17 0 1.07 0.53 0.4 2.17
Total 0.34 0 2.14 1.06 0.8 4.34

The test statistic χ̄2 is the sum of these random variables

χ̄2 =
∑ (oij − êij)2

êij
∼ χ2(v)

which is approximately χ2-distributed with v = r − 1 degrees of freedom (one degree of freedom is
lost for each dimension). Now we will reject the null hypothesis if the actual value of this statistics
is more than the 1−α-th percentile of the χ2-distribution. For α = 0.05 and four degrees of freedom
the critical value is 9.49, which means that the test failed to reject the null hypothesis.

2.2 Goodness-of-fit

Example 67. The limiting distribution of alignment. If we have built a model of transition
process, which predicts a particular limiting distribution, we can check whether a sample from
the language population can be assumed to be drawn from the limiting distribution.

Nominative Nom. Diff. Ergative Split and Erg.Diff. Neutral Total
pi 0.23 0.15 0.07 0.05 0.50 1
ei = 400pi 92 60 28 20 200 400
oi 88 52 36 32 192 400

The value of χ2 is 11.05 (for v = 4), p = 0.03, so the hypothesis is rejected for α = 0.05, yet
would not be rejected for α = 0.01.

Example 68. Dynamic independence. The following model of transition processes for basic
word order typology is based on the analysis of divergence rates:

E0 E1 p01 p10 limn→∞ p
(n)
1

OS SO 0.586 0.004 0.993
VS SV 0.236 0.004 0.983
OV VO 0.096 0.055 0.635

Here pij are “unconditional” transition probabilities (nothing is known about the initial state
except for the value of the particular variable described). Yet transition events can depend
on the values of other variables, in particular, of the other word-order variables. The χ2
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statistic can be used to test how well divergence rates based on the general model predict the
divergence rates in samples with fixed values of other variables.

fixed E1 sample size p̂
(n)
1 d̂(n) e(D) o(D) χ2

OV SV 141 0.698 0.149 21.01 17 0.8
VO SV 146 0.986 0.015 2.19 0 2.19
OV SO 141 0.924 0.104 14.66 16 0.12
VO SO 146 0.983 0.031 4.53 1 2.75
VS SO 36 0.778 0.286 10.3 8 0.51
SV SO 269 0.996 0.013 3.5 2 0.64

3 Regression

The case of simple linear regression:

E(Y |x) = β0 + β1x

The standard approach is the Principle of Least Squares, which says to minimize the sum of the
squared deviations:

S =
n∑

i=1

(yi − β0 − β1x)2

which gives

β̂1 =
∑

(xi − x̄)yi∑
(xi − x̄2)

β̂0 = ȳ − β̂1x̄

Example 69. Divergence rates. The model based on Markov processes entails a linear depen-
dency between the divergence rate d(n) (the conditional probability of two languages being in
different states given that they were in the same state at the previous step) linearly depends
on the probability of the states at the same step of the process, p

(n)
1 :

d(n) = β1p
(n)
1 + β2

where the coefficients are defined by transition probabilities. How the linear regression model
can be used to estimate the transition probabilities?
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